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Section I

INTRODUCTION

* The objective of this study is to determine

if a basis can be established for a statistical model of

the distribution of vertical shear (vertical gradient of
horizontal velocity) in the upper ocean. We have approached

P this problem in three stages:

" Define as our basic descriptor the probability

distribution of shear squared;

* Determine how well this observed probability

distribution can be described by a known

analytic probability distribution;
p

* Test the assumptions which would have to

be satisfied to ensure that the observed

samples do, indeed, come from the known

distribution.

In order to examine these questions, we have

analyzed vertical profiles of horizontal velocity in the
upper ocean provided by David Evans of the University of

Rhode Island. The data were collected by a sensor system

called YVETTE.

In Section 2 we briefly describe the YVETTE data.

A more detailed description is given by Lambert et al.

(1980). We also describe the processing which we applied

A-V
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to the YVETTE profiles and the general characteristics of

the data. In Section 3 we derive an analytic model for the

probability distribution of mean-square shear. This model

leads us to speculate that the occurrence of shear-squared

values in various depth regimes follows a X 2 probability

distribution. In Section 4 we test this hypothesis

statistically in two ways. In one we compare directly the

observed shear-squared distributions with suitable X 2.

distributions to assess the acceptability of the hypothesis,

while in the other we test how well the statistical (as

opposed to physical) assumptions required for a X 2-distri-

bution are satisfied by the data. In Section 5 we describe

an attempt to implement the X 2 model by making use of
a possible relationship between N2 and S 2 proposed by

Patterson et al.(1981) in a companion SAI report. We

discuss the utility of this model and make recommendations

for further improvements.

1-2
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p Section 2

YVETTE VELOCITY PROFILES - OVERVIEW

V

2.1 YVETTE STATIONS

The data on which our analysis is based were

obtained by David Evans of the University of Rhode Island in

1975 and 1977 with a vertical profiling instrument, YVETTE.

At the time these profiles were measured YVETTE was a

four-meter-long tube equipped with Neil Brown conductiv-

ity, temperature, and depth (CTD) sensors as well as an

orthogonal pair of acoustic current meters. A detailed

description of YVETTE is provided by Evans et al. (1979).

When deployed, the probe fell freely through the water

column at a rate of 25 cm s-I. The water temperature,

conductivity, two orthogonal components of horizontal

velocity relative to the probe housing, and the orientation

of the instrument relative to the earth's magnetic field
were recorded internally on magnetic cassette tape. The

sensors were sampled at a rate of 2.5 times per second to

yield a vertical sampling interval of approximately

10 cm. The CTD sensors had a resolution of 0.001 mmho
0 cm- 1 , 0.00050C, and 0.05 dbar, respectively. The

acoustic current meters had a sensitivity of 0.05 cm s-1

and the compass could resolve orientation to within 30.

The data set provided to us was filtered to remove

variations on vertical scales less than 2 m. The velocity

2-1
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profiles were corrected f ; horizontal drag effects imposed

on the system housing by the large-scale vertical shear.

A description of this processing is contained in Lambert

et al. (1980). The resulting data set should, in principle,

include velocity structure resolved over vertical scales

between 2 m and 100 m.

The data set consists of fifteen stations,

fourteen in various parts of the North Atlantic Ocean and

one in the Pacific Ocean. The position, date, and time of

these profiles are listed in Table 2.1. Figure 2.1 shows

the profile locations.

2.2 VELOCITY DATA PROCESSING

The profiles of horizontal velocity obtained from

Evans consisted of values spaced irregularly in the vertical

(pressure) direction with a typical spacing of one meter.

Our first step in analyzing shear values was to inter-

polate the irregularly spaced values to a profile of values

at regular intervals. We did this with a cubic-spline

interpolation to produce values of u and v at intervals of

Im. We then performed numerical differentiations over

specified separations. We considered separations, Az, of 2,

4, 8 and 16 m in this study.

We define shear-squared at depth z as the squared

magnitude of the difference between the horizontal velocity

vector v at depth z +jz and z -JAz, normalized by (Az)2 .

That is

S2 (z;Az) = v(z+jAz)- (z- iz)1 2 (Az) - 2

. (AzU) 2 + (Azv)2  , (2.1)

2-2
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* Table 2.1

YVETTE STATIONS1

* Station Time Latitude Longitude
Number (GMT) Date (N) (W) Comment

5 1942 5 Nov. 75 320191 640341 Near Bermuda

8 0225 8 Nov. 75 35001 66030 '  Sargasso Sea

0 9 1219 it " "

10 1814 9 Nov. 75 380091 690061 Gulf Stream

11 0036 10 Nov. 75 380051 69003' "

12 1312 " 380151 690071 it

1 18 - 7 May 77 22047'  700431 Edge of thermiocline eddy

21 - 9 May 77 220271 70*571 Center of thermocline eddy

23 -- 16 May 77 36024'  67036 Outer part of GSR2

24 to 360201 67044 '  Midway along radius of GSR

* 25 - 17 May 77 36009'  67053 '  Near center of GSR

NOR 1 - 1973 - - Norwegian Fjord

NOR 4 - o - -1 "

NOR 6 -- i - -- Norwegian Coastal Current

* EPOCS36 - July 79 0003 '  109057? Data start just below EUJC 4

1 Adapted from Lambert et al. (1980)

* 2 Gulf Stream Ring

3 Equatorial Pacific Ocean Climate Study

4 Equatorial Undercurrent

2-3
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where u and v refer to velocity components in the east-west

and north-south directions and

z [ z )- u--' za _z- (2.2)

with a similar expression for zv .  Since we used non-

overlapping differences, we obtained fewer shear estimates

as we increased the spacing.

Once the Azu and Azv values were calculated, we

calculated the depth average of each profile, defined as

N u(z.)

z 1=J (2.3)

with a similar expression for -z. By subtracting the

average from the individual values we obtained modified data

L u' and A v':
z z

p

AzU'(Zi) = 6zU(Zi) - AzU (2.4)

In this way we removed any linear trend which might have

* occurred in the data.

The S2 values used in this study are defined as

S2 = (Azu')2 + (Azv') 2  . (2.5)

2-5

po



2.3 SAMPLE STATION - YVETTE 08

The first station we analyzed was YVETTE 08

from the Sargasso Sea. Figures 2.2 and 2.3 show plots

of the data received from URI for this station.* Note the

presen-e of an upper isopycnal layer, a sharp pycnocline

below that, and a region of less steep but still increasing

density below that. We have divided the profiles for this

station into three regimes: the surface mixed layer (ML),

the upper thermocline (UT), and the deep layer (DL). The

dotted lines in the figures denote rather subjective bound-

aries between these layers. The values of Lzu and Az v

tend to be highest in the upper-thermocline region where the

Brunt-V~isglW frequency is highest and lower in the surface

mixed and deep layers. This apparent correlation is ex-

plored in detail by Patterson et al. (1981). We will return

to its implication later in this document.

All of the YVETTE profiles were divided into sub-

*profiles in this manner, using divisions established by

i Patterson et al. (1981) on the basis of changes in Brunt-

V~is~lk frequency. We have retained their definitions

of the layers without modification.

* The profiles shown in these figures were taken directly

from data provided by Evans. The actual data points are
located at irregularly spaced depths as mentioned earlier.

2-6
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* Shear-squared profiles which we computed by

applying (2.5) to the interpolated velocity profiles from

this station are shown in Figure 2.4. The calculations with

2, 4, 8 and 16 m spacings are all presented.

In order to examine the distribution of values

of S2 we divided the range from S2 = 0 to S2 = maximum

in each profile segment into equi-width bins such that the

range would be subdivided into 30-40 bins. We then gene-

rated histograms of the number of values falling into each

bin. Thesc were expressed as the fraction of the total

number of v x.,s in each profile segment. Histograms for

I the three depth regimes of YVETTE 08 are shown in Figure

2.5a-c. The histograms indicate that the data display a

strong preference for low values of S2 compared to the

total range of observed values. The coarse qua]ity of the

* histograms for 8 m and 16 m separations is due to the

small number of S2 values in the samples.

S
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Section 3
SHEAR DISTRIBUTION MODEL

It is possible to derive a model for a shear

probability density function B(S 2 ;Lz) with the application

of a few assumptions about the statistical properties of the

shear field. The assumptions are simple (but not trivial).

In this section we derive such a model and in Section 4 we

apply it to the data.

The basic idea was developed by Bretherton (1969).
He supposed that only one component Lzu of the vertical

velocity difference was significant and that this differ-

ence represented the sum of the vertical gradients asso-

ciated with a large number of linearly independent, random
internal waves. Thus, by the central-limit theorem, L zu is

normally distributed, and

B(ALu; Lz) = (aV12 T exp[- Lzu)2c - 2] (3.1a)

t where the variance

2= <(Azu)2 > (3.1b)

and the braces indicate ensemble averaging (or over a very

large number of independent samples).

The density function is defined in the usual way

with

Prob (kX <o+dx) = B(Xo;A z) dX . (3.2)

3-1
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The probability density function for S2 (Lz) (where sub-
1

sci.4 ts 1 refers to a single component of velocity) is

given by the chi-square density with one degree of freedom:

B(S ;iz) = r [o -S 1 r(W)-lexp(-JSJU-). (3.3)

We extend the analysis to allow two velocity

components to contribute to the mean-square shear.

We assume that the velocity difference vector (Azu, AZV)

represents the vector sum of velocity differences associated

with a large number of linearly independent random phe-

nomena. Then the Multidimensional Central Limit Theorem

(Loeve, 1960) implies that the two-dimensional proba-

bility density function B( Azu,Azv; Az) of the vector

approaches a two-dimensional normal distribution. Thus,

B(zU, Azv;Az) = (27a 2 13 r2 )-1

xexp {If1r 2 )a- 2 FALu)2 + (ti~v)2 - 2rL u,~l

(3.4)

where a 2 is as defined in (3.1b) and r is the covariance

r = <zu Azv> a- 2

We assume that the wave field is isotropic.

Therefore.

r -0 (3.5)

* r(J) is approximately 1.772 so that the quantity in the

brackets is approximately 2.5c SI .

3-2



and

<A zUAzV> = 0

Each individual probability density is given by (3.1) so

that the velocity components are normally distributed. The

separability of the probability densities is a definition of

statistical independence. Hence the velocity difference

components Azu and Az v are not only uncorrelated (3.5)

but statistically independent.

It is now straightforward to obtain the proba-

bility density function of S2 . The sum of the squares of

n normally distributed, independent random variables with

identical distributions has a chi-square probability

density, with n degrees of freedom (Papoulis, 1965). Thus

S2 has a 2-degree-of-freedom density given by

B(S 2;Az) = (2a 2) exp (-IS 2a - 2 ) (3.6a)

for S2 > 0.. The density function in (3.6) is not sharply

peaked for small values of its argument whereas that

in (3.3) is. At large values of its argument, the value

given by (3.6a) is larger than given by (3.3).

We can integrate (3.6a) to show that the expected

value of S2 is

PS 2  <S <2>

2 22 
(3.6b)

and that the variance of S2 is

2 <52 - <S2 > > = 44(3.6c)
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We propose that (3.6a) be tested as a model for

the probability density of mean square shear. Instead of

B(S 2 ; Az) a more useful statistical description is given

by the probability distribution function

K2 2 2 2
(S 6z)= f B(S ;Az)dS

_CO (3.7)

so that

Prob (2S 2 (S A).

From (3.6) and (3.7)

2 2 2 -2
X2(S2;Lz) = 1-exp(- S a ). (3.8)

Figure 2.5 referred to earlier shows the S2

histogram computed, from data from YVETTE 08 data. Super-

posed on that figure are B(S 2 ; Lz) density functions given

by (3.6). In theory, the component variance used in the y2

probability is given by

2 2 21 C
2 2

That is, a 2 and ay (assumed identical) are the variances

of the population distributions of the shear components.

In practical terms, however, we used the estimate 02 given

by

2 x* (39)CF i(a X+a )r(39

the average of the estimates of the variances of the two

components of the sample, since the two component variances

are not exactly equal.
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The definitions of and ay2lead to

r N N1
2 = (Aui/Lz) 2 + _ (Av/z) 2

GN- i-1 N-1 i=l J

(3.10)

where N is the number of samples in the depth regime. Note

that the means of the shear components have been removed

(i.e. ,Auare equivalent to Au" of 2.4).
1 1

Combining (3.10) and (2.5) leads to:

N-

N

= Wi= 1s

N--1- S2(3.11)
3

$

I

3-5

I .



Section 4

SHEAR DISTRIBUTION ANALYSIS

In Section 3 we derived a x2 model for the dis-

tribution of upper-ocean mean-square shear. In this section

we test the applicability of that model. Our approach makes

use of the tools of hypothesis testing, in particular, a

Kolmogorov-Smirnov "goodness-of-fit" test.

We characterize the appropriateness of the model

in terms of the critical level of significance (defined
below) , which we can attach to the hypothesis that the S2

values are drawn from a population which has a X 2 distri-

bution. We estimate the population variance as the variance

of the sample. A goodness-of-fit test for a hypothetical

distribution in which some significant aspect of the

hypothesized distribution is calculated from the sample

is a "conservative" test. This means that the test results

are biased toward higher critical levels of significance.*

We also describe the results of (nonconservative)
statistical tests performed on the data to ascertain

whether the conditions on the velocity field necessary for

a X2 shear distribution were met. We applied a Cox-Stuart

trend test for randomness of the samples of the individual

* Conservative here implies that since the results are

biased toward higher apparent levels of significance we
are less likely to make a decision to reject a stated null
hypothesis.
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components Azu and Av; a Lilliefors test for normality

of the components; a X2 test for mutual independence of

the components; and a Smirnov test for identical distribu-

tion functions of the two components.

A review of hypothesis testing is presented in

Appendix A.

4.1 GOODNESS-OF-FIT TESTS FOR SHEAR

4.1.1 Critical Levels

In order to quantify the degree to which shear

distributions for each profile segment can be represented

by a X 2 distribution (conservatively, with variance set to

the sample variance), we applied the Kolmogorov goodness-of-

fit test. The sole assumption required by this test is that

the values of S2 be random.

The test consists of comparing the observed prob-

ability distribution G(S2 ), calculated from the sample, to

the hypothesized distribution X2 (S2 ) with G 2 estimated

by 0 2 . We obtained the observed probability distribution

simply by ordering S2 values from low to high (index j) and

calculating the cumulative sum of values less than or equal

to a given value:

N

G(S2) - H(xi  xj) where H=1, xj xi

j=1
=0, x > x. (4.1)

The corresponding hypothetical probability is x2(S;a2 ).

The test statistic is the maximum difference between these

two functions at any Si:
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T sup G(S?) - X2(S?)

where "sup" refers to the maximum value. The empirical T

is then compared to tables of quantiles of T predicted from

a postulated T distribution. Table B.1 shows the quantiles

of the Kolmogorov test statistic. The quantity n is the

number of points in the sample and p (=l-a) is the "confi-

dence level".

We define let Ti be the test statistic associated

with one individual test. The first quantile value higher

than Tj is associated with the approximate critical con-

fidence and significance levels, and & . For example,

if the value of Tl, based on a sample of 30 points, were

0.200, then 0.8 < < 0.9 and 0.2 > & > 0.1. On the other

hand, if T1 for the same case were 0.288, then 0.98 ( <

0.99 and 0.02 > a > 0.01.*

Figure 4.la-c shows the graphical comparison

between the observed and the calculated X 2 cumulative

probabilities for YVETTE 08. The statistic Ti is the

greatest separation between the two functions along a

vertical line corresponding to one of the observed values of

S2 . In all the cases depicted a was at least 0.20. Thus

the model falls within the 80% confidence interval of the

observed distribution.

* The quantity ^ = 1- adefines the confidence level around
the empirical distribution at which the model distribution
falls. A value of 0.1 < a< 0.2 implies that the model falls
within the 80 to 90% confidence intervals.
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Figure 4.2a Graphical comparison between observed proba-
bility of S2 (step function) and hypothesized
X2 -distribution (smooth function) based on
the ML of YVETTE 08. Test statistic is the
maximum vertical distance between curves.
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the maximum vertical distance between curves.

4-5

I .



DELTA WM): 2 POINTS IN SAMPLE: 121 DELTA (M): 4 POINTS IN SAMPLE: 6I
.AX DIFFERENCE: 0.871 MAX DIFFEPE14CE: &.669

CN N O.IDCE
8.4 I ?rrER'AZS 1.4 INTERVALS

00% 
go 905aos

0.2 0.2

o.6 9.2 6.4 6.4 ' .6 . o.8 6.2 9.4 " ., 8.8
SHEAR SOUARED (I,'SECf21s i.seE-9S4 SHEAR SQUARED (IISEC?2)2 I.9eE.684

YUTB9 DEPTHS 249.6 TO 499.8 YUTS. DEPTHS 249.8 TO 499.0

DELTA (0): S POINTS IN SAMPLE: 30 DELIA (1): is POINTS IN SAMfPLE: 15
MlAX DIFFERENCE: 0.126 lARX DIFFERENCE: 9.114

1.e 1.6

.8 l. O

8.4 6.

CONFIDENCE
INTERVALS

6.4 0.4

6.2 _.2

1.6 2.86 - . .2 1'. 66 .8 IeSHEAR SOUARED (l-SECt2)S l.8BE*e03 SHEAR SQUARED WI'SEC)t I.iSE86S
YJT*6 DEPTHS 258.6 TO 432.6 YUTSO DEPTHS 254.6 TO 479.0

Figure 4.2c Graphical cpmparison between observed proba-
bility of S' (step function) and hypothesized
X2 -distribution (smooth function) based on
the DL of YVETTE 08. Test statistic is the
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Only four stations could divided into three

depth regimes. In the other eleven the mixed layer was

not well established. In some cases, the layer was so thin

that shear values calculated over 8m and/or 16m produced

only 4 or 5 values. The test was not applied to samples

with fewer than 6 elements. Table B.2 contains the a values

calculated for all stations.

A breakdown of these results by depth, separation,

and (y range (Table B.3) shows that over 75% of the samples

have a critical level of 0.20 or higher. Correspondingly,

the model falls within the 80% confidence interval for 75%

of the samples.

The conservative bias of the goodness-of-fit

test could have been avoided by using the X 2 goodness-

of-fit test rather than the Kolmogorov test. However, that

test has its own set of drawbacks. For one thing, the X 2

test assumes a sample size large enough that the test

statistic is governed by a X 2 distribution. This is prob-

ably not the case for many of the regimes studied here. In
contrast, the Kolmogorov test is effective for small sample

size. Secondly, the X2 test depends on breaking the

sample up into bins of arbitrary width and, especially with

a small sample, the results are sensitive to bin size.

Lastly, quantiles of the X2 statistic are not known with a

great deal of confidence (Conover, 1980). This can reduce

the usefulness of the test. For these reasons we chose to

accept the overestimated values predicted by the Kolmogorov

test and assume that the errors involved are lower than

those inherent in the use of the X2 test for small sample

size.
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4.2 TESTING MODEL ASSUMPTIONS

As we mentioned in Section 3, the reasoning which

led to the hypothesis of a X2 distribution was based on

physical assumptions about the nature of internal wave-

induced shear. We can apply another set of statistical

tests to the distributions of Azu and Azv in order to

test how well these satisfy the assumptions. This second

approach provides an independent test of the X2 hypothesis.

We have assumed in our model that the velocity

difference components meet the following assumptions:

* Azu and Azv occur randomly;

* they are distributed normally;

" they are independent quantities;

" they come from identically distributed pop-
uations.

The reasons for these assumptions were discussed in Section

3. In this section we will show the statistical techniques

we used to determine how well our samples satisfied them.

4.2.1 Cox and Stuart Trend Test

We did not attempt to assess directly the random-

ness of the shear component samples. Instead, we tested to

see whether or not a trend existed using the Cox and Stuart

Test. A sequence of numbers will have a trend if values
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* later in the sequence are uniformly higher or lower than

earlier values. If no such tendency exists, then the sample

is probably made up of random, independent values.

The Cox and Stuart test consists of grouping a

sequence of variables, of length n, into pairs (xi, Xi+k),

where k=n/2 if n is even and k=(n+l)/2 if n is odd. The

pairs are tested to see which value is larger. If we asign

a "+" to pairs in which xi+k > xi and a "-" to pairs in

which xi+k < xi, then the test statistic is T, the

number of pairs which can be denoted by a "+".* Our null

hypothesis is that the probability of observing a "+" is the

same as the probability of observing a "-".

The range of acceptance is bounded according to

m-t < T < t, where m is the number of pairs excluding ties
and t is the greatest number of +'s which would be observed

at level & based on a probability of 0.5. (See Conover

(1980) for the technique for calculating t.) If T falls

outside the bounds, then the hypothesis is rejected.

The results of this test are shown in Tables B.4 and B.5.

Tables B.6 and B.7 show the breakdown by regime, separation,

and &. A total of 91 Lzu profiles and 98 Lzv profiles (out

of 114) satisfied the test at 3 > 0.10. Somewhat more Azv

profiles than Azu profiles satisified at & levels above 0.05,

but both types of profiles can definitely be said to be free

of trends.

* Ties, where xi+k = xi, are disregarded and the total
number of pairs is reduced by the number of ties.
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4.2.2 Lilliefors Normality Test

In order to evaluate whether the shear com-

ponent samples come from normal distributions, we applied

the Lilliefors test. The test is performed not on an

original sequence xi, but on a normalized sequence.

zi  = (xi  - i)/X 2  i = 1,2,...,n

where xi is the sample mean and i2 the sample variance.

The distribution of this normalized sequence is compared

against a normal distribution with zero mean and unit

variance. If we define F(z) as our hypothesized normal

distribution and S(z) as the observed distribution of the

adjusted sequence, then the test statistic is the same as

for the Kolmogorov Test:

sup
T = z F(z) - S(z)j.

The Kolomogorov tables cannot be used to evaluate this

test, however; instead, special quantiles must be used to

make a decision.

The critical levels obtained by applying this

test to YVETTE stations are shown in Tables B.8, and B.9.

The distributions of a values are listed in Tables B.10 and

B.11. The test results showed that the normality assumption

was satisfied by nearly all profiles (95 of the Azu and 96

of the Azv) at levels above 0.10.
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9 4.2.3 Chi-Square Independence Test

The chi-squared independence test assumes that

we have a sample of length N whose elements can be sorted

by two criteria. In our application the two criteria are

whether a value comes from Azu or Azv and which of a

number of bins of width AS 2 a shear component value fits.

If we break the range of shear into C bins, then each

f observation can only fall into one of 2C categories.

The test statistic is based on the number of

entries in each category. We can envision the possible

choices as a matrix with 2 rows (one for each shear compo-

nent) and C columns (one for each shear range bin). Each

possible category can be denoted by indices i and j, where

i=1 or 2, j=1,2. ..... , C. The number of observations in

each bin can be denoted as Oij. For each row we define:

C
Ri = Oij

j=1
and for each column we define:

2
cj oij ,

t i=1

If we also define:

Eij = Ri C. N
-

then the test statistic is defined as

T = 4 (Oij-Eij)2Eij

i=1 j=1
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The assumption in tnis test is that T is governed by a

chi-square distribution with (C-i) degrees of freedom.*

If T falls below the & level quantile then we can accept the

hypothesis that an element occurs in row 1, column j

independently of an element in row 2, column j and that

this is true for all J. For our case this is equivalent to

saying that the Au/Az values occur independently of the

Av/Lz values.

The critical levels obtained by applying this

test to YVETTE profiles are listed in Table B.12 and the

distribution in Table B.13. Nearly all of the profile

pairs (112) satisfied the independence test at & levels

above 0.10.

This test does not seem subject to the bin-

width sensitivity mentioned when discussing the chi-square

goodness of fit test. We presume that this is because two

observed distributions are being compared with one another

rather than one observed distribution with a hypothesized

distribution. Nevertheless, the number of bins was never

Ji greater than one-half the number of samples, and in most

cases was less than one-third.

4.2.4 The Smirnov Identical Distribution Test

The final assumption to be tested is that the two

shear components are governed by identical distributions.

* Actually with (number of rows-1).(number of columns-i)

degrees of freedom. In this application, with only two
rows, we find (C-i) degrees of freedom.
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* D The test chosen, the Smirnov test, is of the Kolmogorov -

type in which the test statistic is the maximum separation

between two observed distributions. If SI(x) and S2 (y) are

empirical distributions of quantities x and y, and Fl(x) and

* F2 (y) are their (unknown) hypothesized distributions, then

we can test the hypothesis Fl(x) = F2 (y) by generating the

statistic

pT SIS(Z) - S2 (z)

for z's in the range of all possible x's and y's. If T

is less than the appropriate quantile, then the hypothesis

can be accepted at level a.

Note that Sl(x) and S2(y) do not have to have

the same number of samples in order to apply this test.

* However, our samples are of equal length.

The critical levels obtained for YVETTE data

are listed in Table B.14, and their distribution is listed

in Table B.15. Again, nearly all of the profile pairs (113)

may confidently be said to come' from identical distribu-

tions.

4.2.5 Summary of Assumption Tests

The results of these four tests show that we are

statistically justified in accepting the hypotheses based

on the assumptions; these assumptions, in turn, led to the

postulated X2 distribution for shear squared. That is,

we can assume with a high level of confidence that the shear

components, Azu and AzV , do come from distributions which

4-13
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are random, normally dibtributed, mutually independent, and

identically distributed. Table 4.1 shows the percentage of

each set of samples which have specific minimum critical

levels. For example, the Cox-Stuart Test on Azu was

satisfied by 69% of the samples at a>0.20, and 80% at

&>0.10. These results lead us to believe that:

" the agreement between S2 distribution and

X2 distributions based on sample variances is

significant, and,

* that because the assumption tests are not

biased, we could extend the previous statement

to indicate that S2 values do seem to come

from a X2 distributed population.

4-14
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Table 4. 1

Percentages of Samples which satisfy

* assumption tests at three & levels.

Test & = 0.20 0.10 0.05

Cox-Stuart Lzu 69% 80% 87%

t
Cox-Stuart eLzv 75% 86% 93%

*Lilliefors Azu 75% 83% 940'

Lilliefors Azv 80% 84% 92%

X2 Independence 93% 98% 99%

Smirnov 96% 99% 100%
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Section 5

MODEL APPLICATION

Thus far we have described a model for the

distribution of shear in several depth regimes of the upper

ocean and established a statistical basis for accepting the

model. The final question which must be addressed is how to

apply the model.

The key parameter in the model is ,, the variance

of the velocity component differences based on observations.

If we can relate this parameter to large scale, more easily

observed quantities, then we can develop the S2 probability

distribution that we seek. One parameter which can be

obtained with relative ease is N2 , the Brunt-Vaisali

frequency at depth in the water column. Since we divided

the YVETTE shear profiles into regimes distinguished by

changes in N2 , we examined the possibility of obtaining

values of a through some correlation between N2 and S2 .

Patterson et al. (1981) have analyzed the same

YVETTE data that we used and have reached some conclusions

about the relationship between N2 and S2 . They showed

that if N2 and S2 are computed over 2 m differencing

intervals, then the ratio of N2 to 2 (where the overbar

indicates depth averaging as before) varies between 0.5

and 3.3 in the upper thermocline and deeper layers (Figure

5.1).

S
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Figure 5.1 Ratio of N2 to Sf (based on 2 m differencing
intervals) versus station number for the
different stratification regimes (from Patterson
et al. 1981).
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The observation that this ratio is reasonably

well-behaved motivated us to estimate P.2 as

PS2 = k N . (5.1)

where k is an order unity proportionality constant. We

chose a value of k=1 as a first approximation. We then

estimated the sample component variance from (3.6b) as

= N .(5.2)

* We tested the performance of the X 2 model based

on (5.2) by repeating the Kolmogorov goodness-of-fit test

for ten of the YVETTE stations. The values of the test

statistics, T, are shown in Table 5.1, along with the

statistics, T0 .2 0 1 which is the maximum T value which

would have resulted in a fit at level of significance

a = 0.20. If we had been testing a hypothesis of the form

Ho = "S2 occur according to a x2 -distribution
with variance given by (5.2),"

then these results would not be very impressive. Only 6 out

of 20 profiles produced T values sufficient to result in

acceptance at a comfortably high significance level of

a > 0.20. On the other hand, the largest calculated T in

Table 5.1 is 0.284. The quantity T is defined as the maxi-

mum difference between the observed probability distribution

and the X 2 distribution. Thus the model-predicted proba-

bility of occurrence (expressed as percentage of occurrence)

of S2 values less than specified levels differed from the

5-3

)



Table 5.1

Test Statistics for the Kolmogorov Test. Teqt
statistics, T, obtained by estimating X2 (S! IN2

based on (5.' ). The calculations were onl
carried out for Lz=2 m. T0 .2 0 is the statistic
which would specify rejection at level 0.20.

STATION REGIME TT.2

YVETTE 05 UT 0.284 0.151
DL 0.114 0.081

08 UT 0.065 0.138
DL 0.174 0.096

09 UT 0.079 0.102
DL 0.114 0.102

10 UT 0.062 0.126
DL 0.261 0.084

11 UT 0.161 0.130
DL 0.183 0.084

12 UT 0.178 0.139
DL 0.190 0.079

J18 UT 0.231 0.111
DL 0.182 0.091

21 UT 0.183 0.098
DL 0.075 0.103

23 UT 0.138 0.145
DL 0.145 0.078

24 UT 0.260 0.187
FbL 0.262 0.296
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observed probability by no more than 30% in any of the

profiles tested. And in 75% of the cases the difference

was less than 20%. These figures serve to indicate the

degree of confidence that the user can place in predictions

from the statistical model used in this manner.

5
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Section 6

SUMMARY

We have described a statistical model for the

distribution of S2 values in different depth regimes in

the upper ocean. The model indicates that a X2 distribution

with variance computed from the average S2 in the sample

* is a good approximation to the observed distribution. The

model is physically reasonable and has been verified by

statistical analysis of shear profiles measured at 15

different YVETTE stations.

t

The key to translating this model into a useful

tool for future study lies in developing a method of

estimating the mean value of S2, IjS2 , in a depth regime
from easil-y measured oceanic parameters. A simple test,

based on results of an independent analysis of YVETTE data,

consisted of estimating IS2 from the mean Brunt-Viisili

frequency in the regime. This test showed that such a
*simplified approach to using the statistical model could

yield a cumulative shear distribution which agreed with the

observed distribution to 30% or better. This particular use

of the model is restricted at present to shear values
t obtained from differences over two meters.

The reasonable success of the X 2 model when

combined with a fairly primitive scheme for estimating

the parameter needed by the model leads us to suggest

further study. This would include examination of more S2

data sets, both vertical profiles and time series from

vertically spaced current meters. We would also need

6-1
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to examine more extensively the nature of the N2 -T2 rela-

tionship over various vertical scales. In particular,

it appears (Patterson et al., 1981) that the relationship

between N2 and S 2 may be less well defined at larger

separations. This would of course, reduce the effective-

ness of the model over these scales.

6-
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APPENDIX A

HYPOTHESIS TESTING

It is possible to employ statistical tests to
quantify the degree of confidence which can be assigned to a

hypothesis such as "S2 comes from a X 2 distribution". To

do this we establish a null hypothesis, Ho, regarding some
characteristic of the data set being examined:

Ho = "the hypothesis being tested is true."

We then use the data to produce a test statistic, T, whose

i value will allow us to either reject or not reject H.

Notice the choice of words in the last sentence. If we

reject Ho, we are in effect stating "the hypothesis is

false." But if we do not reject H o we are not saying

* "the hypothesis is true." Instead, we are saying "the

hypothesis cannot be proven false." We must allow for the

possibility that a larger sample might lead us to reject

Ho . Tests of this type are rejection tests in that we

can only reject or not reject, but never accept Ho without

reservation. It is conceivable, for example, that, based

on the analysis of a single data set, two mutually

exclusive hypotheses could both fail to be rejected. A

detailed description of hypothesis testing techniques

is presented by Conover (1980). We present an outline

here.

Hypothesis testing is subject to two types of

error:

* rejecting Ho when Ho is actually true (Type I
error), and
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* accepting Ho when Ho is actually false (Type II

error).

We can quantify approximate probabilities of

making these errors based on a given sample. We define a,

the level of significance, as the maximum probability of

making a Type I error, and B as the probability of making a

Type II error.

We want both cv and B to be as small as possible.

Unfortunately, for a fixed sample size, decreases in a
are usually accompanied by undesirable increases in 8.

That is, if we set up a test which tends to minimize the

probability of rejecting a true null hypothesis, we increase

the chance of accepting a false null hypothesis. The only

way to reduce both a and 3 is to increase the sample size

(until eventually the sample encompasses all members of the

population being studied and all tests are exact). Only if

there is a simple alternative hypothesis to Ho can S be

estimated. This is not the case in general.

The rationale behind the level of significance

can be illustrated by a simple example. Suppose we have

a finite sample of n random independent observations of

some quantity x from which we compute a given estimator T.

We have reason to believe that the true value T (given

infinitely many observations) of the parameter being esti-

mated is To . Thus our hypothesis Ho is T=T o . Even if

T=To, the sample value T will not equal To . We assume

that a sample value T has a probability density distribution

B(T); then we can use this distribution to estimate the

pr -ability of observing any value of T given that Ho is

true.

A-2
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Figure A-i shows a schematic probability density
which assumes T=T o . The test statistic frow, a single

test, Ti, falls some distance from To . If T1 is so far

from To that its probability of occurrence is very small,

we decide that Ho should be rejected. In order to establish

* criteria for our decision we decide on upper and lower

limits Ta/2 and T1-a/2' which define a region of acceptance.

These T a are chosen such that the probabilities of values

from the distribution falling beyong these limits are

Prob (T < Tl_) (A.la)

and

Prob (T > a)= (A.lb)

Thus the probability of T falling outside the range defined

*by these limits is a. We set a small; then if we do observe

such a T we can be confident that we have only a low prob-

ability of being wrong by rejecting Ho . a is called

the "level of significance" of the test and the range of T

9 #for which the hypothesis will be rejected is called the
"region of rejection." If H0 is true, the chance that T1
will fall'in the range of rejection is just a; thus a is the

probability of rejecting a true null hypothesis (Type I

9 error).

We can also define a second quantity, a , which.

we refer to as the critical level of significance. This

9 is defined as the smallest significance level at which

the hypothesis would be rejected for a given observation.

This is defined by

* Prob (T > 1) = /2 , (A.2)
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Reject; Accept H ' Reject

H i HO if TI
B(T) I falls here

- i

II

Figure A.1 Schematic probability density of T. The

double cross-hatching indicates the area
of rejection defined by a. The single-
and double-cross-hatching together indi-
cate the critical area defined by 0.

A-4



if T, > To, and a similar definition if Ti < To. This level

is also illustrated in the figure. If, as illustrated,

a > a, we have the situation in which the level of signifi-

* cance criterion is more than satisfied. Thus a can be

looked at as a measure of the robustness of the test.

As a increases, the confidence with which we can decide not

to reject Ho increases.

9J

It is important to notice that a is arbitrarily

defined by the tester, while & is defined by the sample

being tested. We can require that the test be satisfied at

some small level a. If we do this, we are taking the point

of view that the sample must have every reasonable opportun-

ity to pass the test and that we want to minimize our

chances of rejecting a true Ho . Or we can let the sample

indicate how well or poorly it satisifes the test by means

of & . This way, our point of view is that we are less

concerned with the possibility of rejecting a true hypoth-

esis than we are with assessing the certainty with which we

make decisions. We choose to use a in our analysis.

i'
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Table B. 1

Quantiles of the Kolmogorov Test Statistic*.

Tw$-SAd d Tat
P - O .9 " .95 .f .98 "JO .00 -P5 .8 it

1-I .900 .950 .975 .990 .995 a-23 .22 6 .259 .2S7 .321 .344
*2 .64 .776 .342 .900 .929 22 .221 .253 .21 .314 .337
3 .565 .636 .708 .715 .329 23 .216 .247 .275 .307 .330
4 .493 .565 .624 .69 .734 24 .212 .242 .269 ."01 .323
5 .447 .509 .563 .627 -"669 25 .208 .238 .264 .295 .317

6 .410 .468 .519 .577 .617 26 .204 .233 29 .290 .311
7 .331 .436 .413 .538 .576 27 .200 .229 .254 .254 .305
8 .353 .410 .454 .507 .542 21 .197 .225 .250 .279 .300
9 .339 .337 .430 .410 .513 29 .193 .221 .246 .275 .295

10 .323 .369 .409 .457 .489 30 .190 .218 .242 .270 .290

11 .303 .352 .391 .437 .468 31 .137 .214 ...231 .266 .285
12 .296 .338 .375 .419 .449 32 .184 .211 .234 .262 .281
13 .215 .325,. ,361 .404 .432 33 .132 .203. .231 .253 .277
14 .275 .314: .349 .390 .41 34 .179 .205 .227 .254 .273
15 .26 .304 .338 .377 .404 35 .177 .202 .224 .251 .269
16 .258 .295 '--.327 .366 .392 36 .174 .19 .2.21 .247 .265
17 .250 .236 .318 .355 .331 37 .172 .196 .218 .244 .262
1 .244 .279 .309 .346 .371 33 .170 .194 .215 .241 .2U19 .237 .271 .301 .337 .361 39 .168 .191 .213 .238 .253
20 .2.32 .265 .294 .329 .352 40 .165 .189 .210 .235 .252

Approximation 1.07 1.22 1.36 1.52 1.63
for a >40 a

The entries in this table are selected quantiles

of the Kolmogorov test statistics T. Reject Ho  at the

level a if T exceeds the l-a quantile given in this table.

These quantiles are exact for n < 40. The other quantiles

are approximations that are equal to the exact quantiles in

most cases. A better approximation for n > 40 results if

(n+ [n/10) is used instead of N7 in the denominator.
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Table B.2

Kolmogorov Goodness-of-Fit Test Results

Critical levels* for the three depth regimes for all 15 YVETrE stations.

Depth Regime = ML UT DL

Separation= 2m 4 8 16 2 4 8 16 2 4 8 16

Stat ion

05 <0.01 0.20 -- -- <0.01 0.02 0.20 0.20 0.20 0.10 0.20

08 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

09 0.20 0.20 0.01 -- 0.20 0.10 0.10 0.20 0.20 0.20 0.20 0.20

10 -- -- -- - 0.20 0.20 0.20 0.20 0.20 0.20 0.05 0.10

11 -. 0.02 0.20 0.20 0.20 0.20 0.20 0.20 0.20

12 .. . .-. 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

18 .:0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
21 .. . 0.01 0.02 0.05 0.20 <0.01 0.20 0.20 0.20
23 . . . . 0.20 0.20 0.20 0.20 <0.01 <0.01 <0.01 0.02

24 - -. . . 0.10 0.20 - -- 0.20 0.05 -- -
25 .. . .0.20 0. 20 0. 20 0. 20 0.20 0.20 0. 20 0.20

NOR1 0.20 0.20 .. ..- 0.05 0.20 0.02 -
5I)M4 . . . . 0.20 -. . .. 0.20 0. 20 0.20 -

NOR6 -- -... <0.01 <0.01 <0.05 0.20 -- - --

EPOCS6 0.0 0.20- 0.20 0.20 0.20 0.20 0.02 0.20 0.20 0.20

4 4 2 1 15 13 12 12 14 14 13 11

52 52

* & values listed are not exact. Table A.1 shows five
levels: 0.20, 0.10, 0.05, 0.02, 0.01. The' value listed
in this table indicates the approximate range of 6. For
example, a value of 0.10 implies 0.10 <& < 0.20.
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Table B.3

Kolmogorov Goodness-of-Fit Test Results

Distribution of critical levels by & range for depth
regimes and separations fran all YVEITE stations.

&>0.2 0.2>6>0.1 0.1>&>0.05 0.05>&>0.02 0.02>&>0.01 &<0.01 TOTAL

Az= 2m 2 1 0 0 0 1 4

= 4m 4 0 0 0 0 0 4
: = 1 0 0 0 1 0 2

= 16M 1 0 0 0 0 0 1

Lz = 2n 10 1 0 1 1 2 15

= 4m 10 1 0 1 1 0 13
= 8n 9 1 2 0 0 0 12

= 16m 12 0 0 0 0 0 12

A z = 2m 10 0 1 1 0 2 14

= 4m 12 0 1 0 0 1 14
DLD= n 9 1 1 1 0 1 13

= 16m 9 1 0 1 0 0 11

TOTAL 89 6 5 5 3 7 115

I|

If

If
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Table E.4

Cox-Stuart Trend Test Results

Critical levels for the Azu distri-
butions for all YVETTE stations.

DEPTH REGIME = ML UT DL

SEPARATION= 2 4 8 16 2 4 8 16 2 4 8 16

YVETTE 05 0.20 0.10 -- 0.20 0.20 0.10 -- 0.20 0.20 0.20 0.20

08 0.20 0.01 0.20 0.10 <0.01 0.05 0.01 0.05 0.20 0.20 0.20 0.10

09 0.20 0.05 0.20 -- 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

10 - -- - 0.01 <0.01 0.10 0.05 <0.01 <0.01 0.02 0.02

11 .. . .. . <0.01 0.05 0.05 0.02 0.02 0.20 0.10 0.20

12 .. .. . .. 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

18 . .. . .. 0.20 0.20 0.20 0.20 0.02 0.20 0.20 0.20

21 .. .. . .. <0.01 0.20 0.10 0.20 0.10 0.20 0.20 0.20

23 .. . .. .. 0.20 0.05 0.20 0.20 0.20 0.20 0.20 0.20

24 . . . .. 0.10 0.20 - -- 0.20 0.20 - --

25 . .. . .. 0.20 0.20 0.20 0.10 0.20 0.20 0.20 0.20

NOR 1 .. .. .. . 0.20 0.20 0 . 0.20 0.20 0.20 -

4 . .. . .. 0.10 - 0.20 0.20 - -

6 .. .. .. .. 0.20 0.05 0.20 0.20 - - .

EPOCS 6 0.20 0.10 .. .. 0.20 0.20 0.20 0.20 0.01 0.20 0.20 0.20
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Table B.5

Cox-Stuart Trend Test Results

Critical levels for the Azv distri-
butions for all YVETTE

DEPTH REGIME = ML UT DL

SEPARATION= 2 4 8 16 2 4 8 16 2 4 8 16

YVEITE 05 0.20 0.10 -- 0.20 0.20 0.05 -- 0.20 0.20 0.20 0.20

08 0.05 0.20 0.10 0.20 0.20 0.20 0.20 0.05 0.20 0.20 0.20 0.10

09 0.20 0.20 0.20 -- 0.20 0.20 0.10 0.20 0.20 0.20 0.20 0.20

10 - .. . . 0.05 0.20 0.10 0.20 0.20 0.20 0.20 0.20

11 . . .. .. 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

12 .. .. .. .. 0.10 0.20 0.20 0.02 <0.01 0.10 0.10 0.05

18 . .. .. .. 0.20 0.20 0.20 0.10 0.20 0.20 0.20 0.20

21 .. . .. .. 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

23 .. .. .. . 0.20 0.20 0.20 0.02 0.20 0.20 0.20 0.20

24 . .. .. . 0.20 0.20 - -- 0.20 0.02 - --

25 .. .. .. . 0.20 0.05 0.20 0.10 0.20 0.20 0.20 0.20

NOR 1 . .. . .. 0.20 0.02 - -- 0.02 0.20 0.20 -

4 .. -. 0.10 - -- - 0.20 0.20 - --

6 . .. .. .. 0.20 0.20 0.20 0.20 -- -- -

EPOCS 6 0.20 0.10 - -- <0.01 0.05 0.05 0.02 0.20 0.20 0.20 0.20
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Table B.6

Cox-Stuart Trend Test Results

Distribution of critical levels for A zu by 6 range for depth
regimes and separations for all YVETTE stations.

&>0.20 0.20>6>0.10 O.lO>&>O.05 0.05>6>0.02 0.02>6>0.01 a <0.01 TOTAL

Az2 4 0 0 0 0 0 4

4 0 2 1 0 1 0 4

ML 8 2 0 0 0 0 0 2

16 0 1 0 0 0 0 1

Az=2 9 2 0 0 1 3 15

UT 4 9 0 4 0 0 1 14

8 7 3 1 0 1 0 12

16 7 1 2 1 0 0 11

z-2 9 1 0 2 1 1 14

DL 4 13 0 0 0 0 1 14

8 10 1 0 1 0 0 12

16 9 1 0 1 0 0 11

TOTAL 79 12 8 5 4 6 114
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Table B.7

Cox-Stuart Trend Test Results

Distribution of critical levels for Azu by a range for depth
regimes and separations for all YVETTE stations.

>0.20 0.20>6>0.10 0.10>&>0.05 0.05>>0.02 0.02)6>0.01 <Q.01 TOTAL

Az=2 3 0 1 0 0 0 4
4 2 2 0 0 0 0 4

ML 8 1 1 0 0 0 0 2

16 1 0 0 0 0 0 1

A z=2 11 2 1 0 0 1 15

UT 4 11 0 2 1 0 0 14

8 8 2 2 0 0 0 12

* 16 5 2 1 3 0 0 11

A z=2 12 0 0 1 0 1 14

DL 4 12 1 0 1 0 0 14

* 8 11 1 0 0 0 0 12

16 9 1 1 0 0 0 11

TOTAL 86 12 8 6 0 2 114
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1 Table B. 8

Lilliefors Normality Test Results

Critical levels for Azu profiles from all YVETTE stations.

DEPTH REGIME = ML UT DL

SEPARATION= 2 4 8 16 2 4 8 16 2 4 8 16

YVETTE 05 0.01 <0.01 - -- 0.01 0.01 0.20 - 0.20 0.20 0.20 0.20

08 0.05 0.01 0.20 0.10 0.05 0.20 0.01 0.05 0.20 0.20 0.20 0.20

09 0.20 0.10 0.10 -- 0.05 0.20 0.20 0.20 0.20 0.20 0.20 0.20

10 . .. . .. 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

11 .. .. .. . 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20

12 - .. .. . 0.05 0.20 0.20 0.20 0.20 0.20 0.20 0.10

18 . . .. . 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

21 . .. .. . 0.05 0.05 0.20 0.20 0.20 0.20 0.05 0.20

23 .. . .. . 0.20 0.20 0.20 0.20 <0.01 0.10 0.05 0.20

24 .. .. .. .. 0.10 0.20 - -- 0.20 0.20 - --

25 . .. .. . 0.05 0.20 0.05 0.20 0.20 0.20 0.20 0.20

NOR 1 . . .. . 0.20 0.20 - -- 0.20 0.20 0.20 -

4 .. .. .. . 0.20 - -- - 0.20 0.20 - --

6 . . .. . 0.20 0.20 0.10 0.20 -- -- --

EPOCS 6 0.20 0.05 .. .. 0.20 0.20 0.20 0.20 0.10 0.20 0.20 0.20
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Table B. 9

Lilliefors Normality Test Results

Critical levels for Azu profiles from all YVETTE stations.

DEPTH REGIMES = ML UT DL

SEPARATION= 2 4 8 16 2 4 8 16 2 4 8 16

YVETTE 05 0.01 0.05 -- -- 0.02 0.20 0.20 -- 0.20 0.20 0.20 0.20

08 0.20 0.20 0.20 0.10 0.20 0.20 0.20 0.01 0.20 0.20 0.20 0.01

09 0.20 0.20 0.10 -- 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

10 -- -- - 0.20 0.20 0.20 0.10 0.20 0.20 <0.01 0.20

11 .. .. .. .. 0.01 0.05 0.20 0.05 0.20 0.20 0.20 0.20

12 . .. . .. 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

18 . .. .. . 0.20 0.20 0.20 0.05 0.20 0.20 0.20 0.20

21 .. . .. .. 0.01 0.20 0.20 0.20 0.05 0.20 0.20 0.20

23 .. . .. . 0.20 0.20 0.20 0.20 <0.01 0.10 0.20 0.20

24 .. .. .. . 0.20 0.20 - - 0.20 0.20 - --

25 .. . .. .. 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

* NOR 1 - - - - 0.10 0.20 - -- 0.20 0.20 0.20 -

4 .. . .. .. 0.20 - -- -- 0.20 0.20 --

6 - -- <0.01 0.10 0.05 0.20 -- - --

EPOCS 6 0.20 0.20 .. .. <0.05 0.20 0.10 0.20 0.20 0.20 0.20 0.20

p
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Table B.10

Lilliefors Normality Test Results

Distribution of critical levels for Lzu by & range for
depth regimes and separations for all YVETTE stations.

&>0.20 0.20>>0.10 0.10>&>0.05 0.05>6>0.02 0.026>0.01 &<0.01 TOTAL

Az=2 2 0 1 0 1 0 4

4 0 1 1 0 1 1 4
ML 8 1 1 0 0 0 0 2

16 0 1 0 0 0 0 1

Az=2 7 2 5 0 1 0 15
UT 4 12 0 1 0 1 0 14

8 9 1 1 0 1 0 12

16 10 0 1 0 0 0 11

LZ=2 12 1 0 0 0 1 14

DL 4 13 1 0 0 0 0 14

8 10 0 2 0 0 0 12
16 10 1 0 0 0 0 11

TOTAL 86 9 12 0 5 2 114
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Table B.11

Lilliefors Normality Test Results

Distribution of critical levels for Azv by & range for

depth regimes and separations for all YVETTE stations.

>0.20 0.20>6>0.10 0.10X >0.05 0.05>&>0.02 0.026>0.01 &<0.0l TOTAL

Az A2 3 0 0 0 1 0 4

4 3 0 1 0 0 0 4

ML 8 1 0 1 0 0 0 2

16 0 0 1 0 0 0 1

Az=2 9 1 1 1 2 1 15

UT 4 12 1 1 0 0 0 14

8 10 1 1 0 0 0 12

16 7 1 2 0 1 0 11

A jAz=2 12 0 1 0 0 1 14

DL 4 13 1 0 0 0 0 14

8 11 0 0 0 0 1 12

16 10 0 0 0 1 0 11

TOTAL 91 5 9 1 5 3 114
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Table B.12
x 2-Independence Test Results

Critical levels for profiles from all YVETTE stations.

DEPTH REGIME ML UT DL

SEPARATION= 2 4 8 16 2 4 8 16 2 4 8 16

YVEITE 05 0.10 0.25 - -- 0.25 0.25 0.25 - 0.25 0.25 0.10 0.25

08 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

09 0.25 0.10 0.25 - 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

10 - -- -- 0.25 0.25 0.25 0.25 0.25 0.25" 0.25 0.25

11 .. .. .. . 0.25 0.25 0.10 0.25 0.25 0.25 0.25 0.25

12 .. .. .. .. 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

18 . . .. .. 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

21 .. .. .. . 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

23 - .. .. . 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

24 . .. .. .. 0.25 0.25 - -- 0.25 0.25 - -

25 . . .. .. 0.10 0.25 0.25 0.25 0.05 0.10 0.25 0.25

NOR 1 . .. .. .. 0.25 0.25 - -- 0.25 0.25 0.25 -

4 .. .. . .. 0.25 - . 0.02 0.25 - --

6 -- -- - 0.25 0.25 0.25 0.25 - -- --

EPOCS 6 0.25 0.25 - -- 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
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Table B. 13

x2 -Independence Test Results

Distribution of critical levels by & range for depth
regimes and separations for all YVETTE stations.

C>0.20 0.20>6>0.10 0.10>6>0.05 0.05>6>0.02 0.02)6>0.01 & <0.01 TOTAL

Az=2 3 1 0 0 0 0 4

4 3 1 0 0 0 0 4

ML 8 2 0 0 0 0 0 2

16 1 0 0 0 0 0 1

Az=2 14 1 0 0 0 0 15

UT 4 14 0 0 0 0 0 14

8 11 1 0 0 0 0 12

16 11 0 0 0 0 0 11

Az=2 12 0 1 1 0 0 14

DL 4 13 1 0 1 0 0 14

8 11 1 0 0 0 0 12

16 11 0 0 0 0 0 11

TOTAL 106 6 1 1 0 0 114
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Table B. 14

Smirnov Identical Distributions Test Results

Critical levels for profiles from all YVETTE stations.

DEPTH REGIME = ML UT DL

SEPARATIONS= 2 4 8 16 2 4 8 16 2 4 8 16

YVEITE 05 0.05 0.20 - -- 0.20 0.20 0.20 - 0.20 0.20 0.20 0.20

08 0.20 0.20 0.20 0.20 0.20 0.20 0.10 0.10 0.20 0.20 0.20 0.20

09 0.20 0.20 0.20 -- 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

10 - -- -- - 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

11 .-.. 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20

12 .-.. 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

18 .-.- 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

21 .. .- 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

23 .-.- 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

24 .-. . 0.20 0.20 - -- 0.20 0.20 - --

25 .-.- 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

NOR 1 . .. . .. 0.20 0.20 -- -- 0.20 0.20 0.20 -

4 . .. . .. 0.20 - - -- 0.20 0.20 - --

6 . .. . .. 0.20 0.20 0.10 0.20 - -- --

EPOCS 6 0.20 0.20 - - 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
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Table B.15
Smirnov Identical Distributions Test Results

Distribution of & for depth regimes and separations

from all YVETTE stations.

&>0.20 0.20>&>0.10 0.10>6>0.05 0.05>6>0.02 0.02>&>0.01 a<0.01 TOTAL

A2 3 0 1 0 0 0 4

4 4 0 0 0 0 0 4
ML 8 2 0 0 0 0 0 2

16 1 0 0 0 0 0 1

Azz=2 14 1 .0 0 0 0 15

UT 4 14 0 0 0 0 0 14

8 10 2 0 0 0 0 12

16 10 1 0 0 0 0 11

A z=2 14 0 0 0 0 0 14
DL 4 14 0 0 0 0 0 14

8 12 0 0 0 0 0 12

16 11 0 0 0 0 0 11

TOTAL 109 4 1 0 0 0 114
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